Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Aging Cell ; 21(8): e13680, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1992692

ABSTRACT

Determining the mechanism of senescence-associated pulmonary fibrosis is crucial for designing more effective treatments for chronic lung diseases. This study aimed to determine the following: whether Sirt1 and serum vitamin D decreased with physiological aging, promoting senescence-associated pulmonary fibrosis by activating TGF-ß1/IL-11/MEK/ERK signaling, whether Sirt1 overexpression prevented TGF-ß1/IL-11/MEK/ERK signaling-mediated senescence-associated pulmonary fibrosis in vitamin D-deficient (Cyp27b1-/- ) mice, and whether Sirt1 downregulated IL-11 expression transcribed by TGF-ß1/Smad2 signaling through deacetylating histone at the IL-11 promoter in pulmonary fibroblasts. Bioinformatics analysis with RNA sequencing data from pulmonary fibroblasts of physiologically aged mice was conducted for correlation analysis. Lungs from young and physiologically aged wild-type (WT) mice were examined for cell senescence, fibrosis markers, and TGF-ß1/IL-11/MEK/ERK signaling proteins, and 1,25(OH)2 D3 and IL-11 levels were detected in serum. Nine-week-old WT, Sirt1 mesenchymal transgene (Sirt1Tg ), Cyp27b1-/- , and Sirt1Tg Cyp27b1-/- mice were observed the pulmonary function, aging, and senescence-associated secretory phenotype and TGF-ß1/IL-11/MEK/ERK signaling. We found that pulmonary Sirt1 and serum vitamin D decreased with physiological aging, activating TGF-ß1/IL-11/MEK/ERK signaling, and promoting senescence-associated pulmonary fibrosis. Sirt1 overexpression improved pulmonary dysfunction, aging, DNA damage, senescence-associated secretory phenotype, and fibrosis through downregulating TGF-ß1/IL-11/MEK/ERK signaling in Cyp27b1-/- mice. Sirt1 negatively regulated IL-11 expression through deacetylating H3K9/14ac mainly at the region from -871 to -724 of IL-11 promoter, also the major binding region of Smad2 which regulated IL-11 expression at the transcriptional level, and subsequently inhibiting TGF-ß1/IL-11/MEK/ERK signaling in pulmonary fibroblasts. This signaling in aging fibroblasts could be a therapeutic target for preventing senescence-associated pulmonary fibrosis induced by vitamin D deficiency.


Subject(s)
Interleukin-11/metabolism , Pulmonary Fibrosis , Sirtuin 1/metabolism , Vitamin D Deficiency , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase , Animals , Fibrosis , Mice , Mitogen-Activated Protein Kinase Kinases/adverse effects , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Sirtuin 1/genetics , Transforming Growth Factor beta1/metabolism , Vitamin D , Vitamin D Deficiency/complications , Vitamin D Deficiency/genetics
2.
Nat Immunol ; 23(1): 62-74, 2022 01.
Article in English | MEDLINE | ID: covidwho-1514418

ABSTRACT

The molecular mechanisms governing orderly shutdown and retraction of CD4+ type 1 helper T (TH1) cell responses remain poorly understood. Here we show that complement triggers contraction of TH1 responses by inducing intrinsic expression of the vitamin D (VitD) receptor and the VitD-activating enzyme CYP27B1, permitting T cells to both activate and respond to VitD. VitD then initiated the transition from pro-inflammatory interferon-γ+ TH1 cells to suppressive interleukin-10+ cells. This process was primed by dynamic changes in the epigenetic landscape of CD4+ T cells, generating super-enhancers and recruiting several transcription factors, notably c-JUN, STAT3 and BACH2, which together with VitD receptor shaped the transcriptional response to VitD. Accordingly, VitD did not induce interleukin-10 expression in cells with dysfunctional BACH2 or STAT3. Bronchoalveolar lavage fluid CD4+ T cells of patients with COVID-19 were TH1-skewed and showed de-repression of genes downregulated by VitD, from either lack of substrate (VitD deficiency) and/or abnormal regulation of this system.


Subject(s)
Interferon-gamma/immunology , Interleukin-10/immunology , SARS-CoV-2/immunology , Th1 Cells/immunology , Vitamin D/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Bronchoalveolar Lavage Fluid/cytology , COVID-19/immunology , COVID-19/pathology , Complement C3a/immunology , Complement C3b/immunology , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Lymphocyte Activation/immunology , Receptors, Calcitriol/metabolism , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , STAT3 Transcription Factor/metabolism , Signal Transduction/immunology , Transcription, Genetic/genetics
3.
BMC Infect Dis ; 21(1): 588, 2021 Jun 19.
Article in English | MEDLINE | ID: covidwho-1277919

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has been shown to cause serious health problems among them is the Acute Respiratory Distress syndrome (ARDS). Vitamin D receptor (VDR) signaling possibly partakes in the pathophysiology of this devastating complication. METHODS: In the current project, we have appraised expression levels of VDR, CYP27B1 and a number of associated lncRNAs in the circulation of COVID-19 patients versus healthy subjects using real-time PCR method. RESULTS: Expression of SNHG6 was considerably lower in COVID-19 patients compared with control subjects (Ratio of mean expression (RME) = 0.22, P value = 7.04E-05) and in both female and male COVID-19 patients compared with sex-matched unaffected individuals (RME = 0.32, P value = 0.04 and RME = 0.16, P value = 0.000679683, respectively). However, its expression was similar among ICU-hospitalized and non-ICU patients. Similarly, expression of SNHG16 was lower in in COVID-19 patients compared with controls (RME = 0.20, P value = 5.94E-05) and in both female and male patients compared with sex-matched controls (RME = 0.32, P value = 0.04 and RME = 0.14, P value = 0.000496435, respectively) with no significant difference among ICU-hospitalized and non-ICU hospitalized patients. Expression of VDR was lower in COVID-19 patients compared with controls (RME = 0.42, P value = 0.04) and in male patients compared with male controls (RME = 0.27, P value = 0.02). Yet, expression of VDR was statistically similar between female subgroups and between ICU-hospitalized and non-ICU hospitalized patients. Expression levels CYP27B, Linc00511 and Linc00346 were similar among COVID-19 patients and healthy subjects or between their subgroups. Significant correlations have been detected between expression levels of VDR, CYP27B and SNHG6, SNHG16, Linc00511 and Linc00346 lncRNAs both among COVID-19 patients and among healthy controls with the most significant ones being SNHG6 and SNHG16 (r = 0.74, P value = 3.26e-17 and r = 0.81, P = 1.54e-22, respectively). CONCLUSION: Combination of transcript levels of VDR, CYP27B and SNHG6, SNHG16, Linc00511 and Linc00346 could differentiate patients from controls with AUC = 0.76, sensitivity = 0.62 and specificity = 0.81. The current data potentiate SNHG6, SNHG16 and VDR as possible contributors in COVID-19 infection but not in the severity of ARDS.


Subject(s)
COVID-19/virology , RNA, Long Noncoding/genetics , Receptors, Calcitriol/genetics , Respiratory Distress Syndrome/virology , SARS-CoV-2/physiology , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Adult , Aged , COVID-19/epidemiology , COVID-19/physiopathology , Case-Control Studies , Female , Humans , Iran/epidemiology , Male , Middle Aged , Pilot Projects , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/physiopathology , Sensitivity and Specificity , Signal Transduction
4.
Int J Mol Sci ; 21(18)2020 Sep 08.
Article in English | MEDLINE | ID: covidwho-831006

ABSTRACT

Vitamin D is a steroid hormone classically involved in the calcium metabolism and bone homeostasis. Recently, new and interesting aspects of vitamin D metabolism has been elucidated, namely the special role of the skin, the metabolic control of liver hydroxylase CYP2R1, the specificity of 1α-hydroxylase in different tissues and cell types and the genomic, non-genomic and epigenomic effects of vitamin D receptor, which will be addressed in the present review. Moreover, in the last decades, several extraskeletal effects which can be attributed to vitamin D have been shown. These beneficial effects will be here summarized, focusing on the immune system and cardiovascular system.


Subject(s)
Vitamin D/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Animals , Bone and Bones/metabolism , Calcitriol/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P450 Family 2/metabolism , Homeostasis , Humans , Lipid Metabolism , Mixed Function Oxygenases/metabolism , Receptors, Calcitriol/metabolism , Skin/metabolism , Vitamin D3 24-Hydroxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL